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Kinetics of the shear banding instability in startup flows

S. M. Fielding* and P. D. Olmsted†

Polymer IRC and Department of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
~Received 30 August 2002; published 30 September 2003!

Motivated by recent light scattering experiments on semidilute wormlike micelles, we study the early stages
of the shear banding instability using the nonlocal Johnson-Segalman model with a ‘‘two-fluid’’ coupling of

flow to micellar concentration. We perform a linear stability analysis for coupled fluctuations in shear rateġ,
micellar strainW, and concentrationf about an initially homogeneous state. This resembles the Cahn-Hilliard
~CH! analysis of fluid-fluid demixing~although we discuss important differences!. First, assuming the initial
state to lie on the intrinsic constitutive curve, we calculate the ‘‘spinodal’’ onset of instability in sweeps along
this curve. We then consider start-up ‘‘quenches’’ into the unstable region. Here the instability in general occurs
before the intrinsic constitutive curve can be attained, so we analyze the fluctuations with respect to the
time-dependentstart-up flow. We calculate the selected length and time scales at which inhomogeneity first
emerges. When the coupling between flow and concentration is switched off, fluctuations in the ‘‘mechanical

variables’’ġ andW are independent of those inf, and are unstable when the intrinsic constitutive curve has
negative slope; but no length scale is selected. Coupling to the concentration enhances this instability at short
length scales, thereby selecting a length scale, consistent with the recent light scattering experiments. The
spinodal region is then broadened by an extent that increases with proximity to an underlying~zero-shear! CH
fluid-fluid (f) demixing instability. Far from demixing, the broadening is slight and the instability is still

mechanically dominated~by dġ anddW) with only smalldf. Close to demixing, instability sets in at a very
low shear rate, where it is dominated instead bydf. In this way, the model captures a smooth crossover from
shear banding instabilities that are perturbed by concentration coupling to demixing instabilities that are
induced by shear.

DOI: 10.1103/PhysRevE.68.036313 PACS number~s!: 47.50.1d, 47.20.2k, 36.20.2r
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I. INTRODUCTION

For many complex fluids, the intrinsic constitutive cur

of shear stressS as a function of shear rateġ is non-
monotonic, admitting multiple values of the shear rate a
common stress. For example, Cates’ model for semidi
wormlike micelles@1# predicts that the steady shear stre

decreases above a criticalġ5ġc1 ~CE in Fig. 1!. At very high
shear rates, fast relaxation processes must eventually re
an increasing stress@2,3#, giving an overall curveACEG. In
the regimeġc1,ġ,ġc2 of decreasing stress, steady hom
geneous flow@Fig. 2~a!# is unstable@4#. For an applied shea

rate ḡ̇ in this unstable range, Spenley, Cates, and McLe
@3# predicted that the system must separate into high and
shear rate bands (ġh and ġ,) with relative volume fractions

satisfying the applied shear rateḡ̇ @Fig. 2~b!#.
In any local constitutive model, the shear stress of a

such banded state is not uniquely selected; it depends
initial conditions@5–9#. However, the inclusion of interfacia
gradient terms into the constitutive equation turns the st
selection problem into the search for a stationary ‘‘fron
between the low and high shear rate bands. This is satis
only by a unique total stressS5Ssel @6,10–12#. The steady-
state flow curve then has the formABFG in Fig. 1. Within
the banding regimeBF a change in the applied shear ra
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adjusts the relative fraction of the bands while the stea
state stressSsel ~common to both! remains constant.

Experimentally, this shear banding scenario is now w
established for shear-thinning wormlike micelles@13–15#.
The steady-state flow curve has a well defined, reproduc
plateau Ssel. The coexistence of high and low viscosi
bands has been observed by NMR spectroscopy@14,16–18#.
Further evidence comes from small angle neutron scatte
@13,19–23#, and from flow birefringence~FB! @24–27#,
which reveals a~quasi!nematic birefringence band coexistin
with an isotropic one. The nematic band of FB has co
monly been identified with the low viscosity band of NMR
but see@28,29#.

In this paper, we consider banding formation kinetics. E
perimentally@13,15,30–34#, in rapid upward stress sweep
the shear rate initially follows the steady-state flow cur
~AB in Fig. 1! before departing for stressesS.Ssel along a
metastable branch~BC!. When this branch starts to level o

FIG. 1. Schematic flow curve for wormlike micelles.
©2003 The American Physical Society13-1
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S. M. FIELDING AND P. D. OLMSTED PHYSICAL REVIEW E68, 036313 ~2003!
~hinting of at an unstable branch forġ*ġc1) the shear rate
finally ‘‘top jumps.’’ Under shear start-up~imposedġ) in the
metastable regionġ,,ġ&ġc1, the stress first rapidly attain
the metastable branchBC ~sometimes via oscillations!, be-
fore slowly decaying onto the steady-state plateauSsel via a
‘‘sigmoidal’’ envelope exp@2(t/tNG)a#. The time scaletNG

5tNG(ġ) greatly exceeds the Maxwell time scale of line
rheology. In the data of Ref.@34#, for example, it has an
apparent divergence asġ→ġ, from above, but decrease
dramatically for larger shear rates approaching the thres
of instability, ġ'ġc1. In the same experiments, the stretc
ing exponenta'2 in the metastable regime, with a cros
over to a'1 for ġ*ġc1 signifying the onset of true insta
bility.

In other systems@32#, the onset of instability nearġ
'ġc1 is marked~in start-up! by a huge stress overshoot th
rapidly subsides toSsel via damped oscillations. Notably, thi
overshoot often coincides with strongly enhanced concen
tion fluctuations@32#, seen as butterfly patterns in light sca
tering with a peak amplitude at a selected length sc
;1 mm. This clearly suggests that flow-concentration co
pling plays an important role in the shear banding instabi
in wormlike micelles. Further evidence comes from t
slight upward slope@22# in thesteady-statestress plateauBF
of some systems. This is most readily explained~in planar
shear at least! by a concentration difference between the c
existing bands@11,35#. Any coupling to concentration ha
important implications for the kinetics of macroscopic ba
formation, due to the large time scales involved in diffusio

Coupling between flow and concentration is alrea
known to be an important effect in sheared polymer soluti
@36,37# and ~more recently! wormlike micellar solutions
@38,39# that are marginally miscible, i.e., close to an und
lying fluid-fluid demixing instability. In these systems, eve
rather weak shear causes dramatically enhanced conce
tion fluctuations in steady state, interpreted as a precurso
a shear-induced demixing~SID! instability at higher shea
rates. Notably, the associated butterfly patterns strikingly
semble those seen in the shear banding start-up experim
of Ref. @32#, described above. In both cases, the scatterin
strongest perpendicular to the compression axis of the sh
contrary to immediate intuition.

While the SID of marginally miscible polymer
@36,37,42# is usually seen as a perturbation of the nea
thermodynamic demixing instability~prematurely triggered
by shear!, the shear banding of semidilute wormlike micell
is often attributed to a purely ‘‘mechanical’’ origin~in the
unstable negatively sloping constitutive curve! @3,4#. In this

FIG. 2. ~a! Homogeneous shear rate and~b! banded profiles.
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work, we present a model that conceptuallyunifiesthese in-
stabilities, smoothly interpolating between ‘‘mechanica
shear banding instabilities and SID, with increasing proxi
ity to zero-shear demixing.

Our approach couples the nonlocal ‘‘diffusive’’ Johnso
Segalman~d-JS! model@6,40# for the dynamics of the micel-
lar stress to a two-fluid model@41–44# for concentration
fluctuations. The d-JS model is the simplest tensorial mo
with a flow curve of negative slope, allowing a flow inst
bility of the type shown in Fig. 1. The two-fluid model cap
tures the so called Helfand-Fredrickson coupling of conc
tration to flow @45#, used previously to describe shea
enhanced concentration fluctuations, SID, and viscoela
phase separation in marginally miscible polymer solutio
with monotonically increasing stress,dSxy /dġ.0
@36,41,45–48,48–53#. In essence, parts of a shear-extend
polymer molecule~or micelle! that are in regions of lower
viscosity will, during the process of relaxing to equilibrium
move more than those parts mired in a region of higher v
cosity and concentration. A relaxing molecule therefore
average moves toward the higher concentration region,
viding a positive feedback mechanism whereby shear
enhance concentration fluctuations and cause SID.

Within this two-fluid Johnson Segalman~d-JS-f) model,
we study the initial stage of instability in the unstable regim
by performing a linear stability analysis@similar in spirit to
the Cahn-Hilliard~CH! calculation for conventional liquid-
liquid demixing# for coupled fluctuations in shear rate, m
cellar stress, and concentration about an initially homo
neous shear state. We calculate the ‘‘spinodal’’ boundary
the region in which these fluctuations are unstable. We t
consider start-up ‘‘quenches’’ into the unstable region, p
dicting the selected length and time scales at which inhom
geneity first emerges~the peak amplitude of any developin
scattering pattern!. We also discuss the physical nature of t
growing instability, according to whether its eigenvector
dominated by the flow variables or by concentration.

We introduced and briefly analyzed the d-JS-f model in a
previous Letter@54#. In this work we discuss more fully the
model’s origin and approximations and give detailed nume
cal and analytical arguments supporting the results
nounced in Ref.@54#.

The paper is structured as follows. In Sec. II we introdu
the model and describe its intrinsic constitutive curves.
Sec. III we review its separate shear banding and demix
instabilities when the coupling mechanism between flow a
concentration is switched off. We then study the unified
stability of the coupled model, performing a linear stabili
analysis for its initial stage. We do this in two parts. In Se
IV we consider shear rate sweeps along the intrinsic con
tutive curve, to define the spinodal onset of instability.
Sec. V we consider shear start-up ‘‘quenches’’ into the u
stable region. We conclude in Sec. VI.

II. THE MODEL

The existing literature contains several approaches
coupling concentration and flow@36,41,45–49#. The two-
fluid model considered by us follows closely that of Miln
3-2
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KINETICS OF THE SHEAR BANDING INSTABILITY . . . PHYSICAL REVIEW E68, 036313 ~2003!
@47#, although we extend his work slightly by including
Newtonian contribution to the micellar stress, for reaso
discussed in Sec. IV C 1.~Milner was mainly interested in
slow shear phenomena, for which the Newtonian terms
unimportant.!

The basic assumption of the two-fluid model is a sepa
force balance for the micelles~velocity v m) and the solvent
~velocity v s) within any element of solution. These a
added to give the force balance for the center of mass ve
ity

v5fvm1~12f!vs, ~2.1!

and subtracted for the relative velocity

v rel5vm2vs, ~2.2!

which in turn specifies the concentration fluctuations.
give these dynamical equations in Sec. II B below. First,
specify the free energy.

A. Free energy

In a sheared fluid, one cannot strictly define a free ene
because shear drives the system out of equilibrium. None
less, for realistic experimental shear rates many of the in
nal degrees of freedom of a polymeric solution relax ve
quickly compared with the rate at which they are perturb
by the externally moving constraints. Assuming that suc
separation of time scales exists, one can effectively t
these fast variables as equilibrated. By integrating over th
one can define a free energy for a given fixed configura
of the slow variables. For our purposes, the relevant s
variables are the fluid momentumrv and micellar concen-
trationf ~which are both conserved and therefore truly sl
in the hydrodynamic sense!, and the micellar strainW
~which is slow for all practical purposes!. W is defined as the
local strain that would have to be reversed in order to re
the micellar stress:

W5E•ET2d with dr 85E•dr ~2.3!

wheredr 8 is the deformed vector corresponding to the u
deformed vectordr .

The resulting free energy is assumed to comprise sepa
kinetic, osmotic, and elastic components:

F5FK~v !1Fo~f!1Fe~W,f!. ~2.4!

The kinetic component is

FK~v !5
1

2E d3xrv2. ~2.5!

The osmotic component is
03631
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Fo~f!5E d3xF f ~f!1
g

2
~¹f!2G

'
1

2E d3q~11j2q2! f 9uf~q!u2, ~2.6!

where f 9 is the osmotic susceptibility andj is the equilib-
rium correlation length for concentration fluctuations. T
elastic component is

Fe~W,f!5
1

2E d3xG~f!tr@W2 ln~d1W!# ~2.7!

in which G(f) is the plateau modulus.

B. Dynamical equations

We now specify the dynamics. As noted above, the tw
fluid model considers a separate force balance for the
celles and the solvent. In any fluid element, the forces
stresses on themicellesare assumed to be as follows.

~1! The viscoelastic stresss communicated along the mi
cellar backbone:

s52~W1d!•
dF

dW
5G~f!W. ~2.8!

~2! The osmotic forcef¹@dF/df#, which acts directly
between monomers, driving conventional cooperative mic
lar diffusion. ~Actually, becauseF has contributions from
both Fo and Fe, this term also contains a ‘‘nonlinear elast
force’’ f¹@dFe/df#.!

~3! A Newtonian stress 2fh mDm
0 , where

Dm
0 5Dm2

1

3
d Tr Dm ~2.9!

and

Dm5
1

2
@¹ vm1~¹ vm!T#. ~2.10!

This arises from fast micellar relaxations such as Ro
modes. We callhm the ‘‘Rouse viscosity,’’ distinct from the
zero shear viscosity of thetotal micellar stress.

~4! The drag forcez(f)v rel impeding the relative motion
of micelles and solvent. Scaling theory@55# suggestsz
;6phj22 where h is the mean viscosityh5fhm1(1
2f)hs.

~5! Stress due to gradients in the hydrostatic pressurep.
The overall micellar force balance equation is thus

rmf~] t1vm•¹!vm5¹•G~f!W2f¹
dF~f!

df

12¹•fhmDm
0 2z~f!v rel2f¹p.

~2.11!
3-3
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S. M. FIELDING AND P. D. OLMSTED PHYSICAL REVIEW E68, 036313 ~2003!
Likewise, for the solvent we have the Newtonian visco
stress, the drag force, and the hydrostatic pressure:

rs~12f!~] t1vs•¹!vs

52¹•~12f!h sDs
01z~f!v rel2~12f!¹p.

~2.12!

These equations contain the basic assumption of ‘‘dynam
asymmetry,’’ i.e., that the viscoelastic stress acts only on
micelles and not on the solvent. Adding them, and assum
equal mass densitiesrm5rs5r @56#, we obtain the overall
force balance equation for the center of mass motion

r~] t1v•¹!v2rv relv•¹f1rf~12f!v rel•¹ v rel

5¹•G~f!W2f¹
dF~f!

df
12¹•fh mDm

0

12¹•~12f!h sDs
02¹p, ~2.13!

in which the equal and opposite drag forces have canc
each other. The pressurep is fixed by incompressibility,

¹•v50. ~2.14!

We attach a cautionary note to Eq.~2.13!. The right-hand
side~RHS! is the net force acting on any fluid element. T
LHS, therefore, should equal the rate of change of that
ement’s momentum,r(] t1v•¹)v. Although this term is in-
deed present, we also find two extra terms, containingv rel .
To circumvent this discrepancy, one might argue that
separate advected derivatives on the LHS’s of Eqs.~2.11!
and ~2.12! @which were added to give Eq.~2.13!# should
havev•¹ v i in place ofv i•¹ v i ~for iPm,s). However, this
would still leave the correction2v relv•¹f on the LHS of
Eq. ~2.13! and does not improve the approximation. We co
sider this discrepancy to be an unsatisfactory aspect of
two-fluid model that is seldom acknowledged in the lite
ture. In this paper, however, we consider only small fluct
tions about a homogeneous shear state~in which v rel50),
and the correction terms are truly negligible.

Subtracting the micellar and solvent Eqs.~2.11! and
~2.12! ~with each predivided by its own volume fraction!,
and neglecting small inertial terms@57# we find an expres-
sion for the relative motion:

v rel5
f~12f!

z~f!
F2¹

dF

df
1

1

f
¹•G~f!W1

2¹•fhmDm
0

f

2
2¹•~12f!hsDs

0

12f G , ~2.15!

which in turn specifies the dynamics of the concentrat
fluctuations:
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~] t1v•¹!f52¹•f~12f!v rel

52¹•

f2~12f!2

z~f!
F2¹

dF

df
1

1

f
¹•G~f!W

1
2¹•fh mDm

0

f
2

2¹•~12f!h sDs
0

12f G .
~2.16!

The essence of the two-fluid model is that the viscoela
stressG(f)W appears alongside the familiar osmotic stre
2f¹dF/df in this diffusion equation. This causes micelle
to diffuse up gradients in this stressG(f)W and so couples
flow to concentration@45#. If the viscoelastic stress then in
creases with concentration (dG/df.0, assumed here!,
positive feedback occurs, causing net diffusion of micel
up their own concentration gradient. Although obviously o
posed by the restoring osmotic force, which drives conv
tional micellar diffusion, this mechanism causes she
enhanced concentration fluctuations or SID in syste
already close to demixing@41,48#. In SB systems, it cause
concentration coupling~see below and Refs.@54,58,59#!. The
overall rate of micellar diffusion is set by the kinetic dra
coefficientz(f). The ‘‘raw’’ micellar diffusion coefficient in
the absence of flow-concentration coupling isD} f 9/z(f).

For the dynamics of the viscoelastic micellar backbo
strain we use the phenomenological d-JS model@6,40#:

~] t1vm•¹!W5a~Dm•W1W•Dm!1~W•Vm2Vm•W!

12Dm2
W

t~f!
1

l 2

t~f!
¹2W. ~2.17!

The terms invm, Dm, andVm describe convection, stretch
ing, and rotation of the micellar strain by flow; 2Vm
5¹ vm2(¹ vm)T with (¹ vm)ab[]a(vm)b . The slip pa-
rametera measures the nonaffinity of the molecular defo
mation, i.e., the fractional stretch of the polymeric mater
with respect to that of the flow field. Foruau,1 ~slip! the
intrinsic constitutive curve in planar shear is capable of
nonmonotonicity of Fig. 1, thereby admitting a shear ban
ing instability @40#. The termW/t describes relaxation of the
micelles back to their unstrained state with a Maxwell tim
t(f). The gradient term@ l 2/t(f)#¹2W allows a selected
banding stress to be calculated.~See Refs.@6,58#, although
other treatments@60,61# have used alternative forms for non
local terms that can also give a uniquely selected stress.! The
lengthl could, for example, be set by the mesh size or by
equilibrium correlation length for concentration fluctuation
Here we assume the former, since the dynamics of the
cellar conformation are more likely to depend on gradients
conformation than in concentration. The equilibrium corre
tion lengthj of course still enters our analysis, through t
osmotic free energy of Eq.~2.6!. Together,l and j set the
length scale of any interfaces. We use Eqs.~2.13!, ~2.14!,
~2.16!, and ~2.17! as our model for the remainder of th
paper.
3-4
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C. Flow geometry and boundary conditions

We consider a statev̄(y) of idealized homogeneous pla
nar shear bounded by infinite plates aty5$0,L% with ( v̄

5 ḡ̇yx̂,¹ v̄,¹` v̄) in the (x̂,ŷ,ẑ) directions. In what follows,
we will analyze the stability of small fluctuations about th
state, for simplicity considering fluctuation wave vecto
only in the flow gradient direction,v5 v̄(y)1dv(y) and
~separately! the vorticity direction,v5 v̄(y)1dv(z).

We assume that there is no slip at the plates, so for c
trolled average shear rate conditions~assumed throughout!

ḡ̇5E
0

L

dyġ~y,z!5const; z. ~2.18!

In this equation,ḡ̇ is the applied shear rate, and

ġ~y,z!5]yvx~y,z! ~2.19!

is the local shear rate~dependent on eithery or z, according
to the wave vector’s direction!. We also assume boundar
conditions@62#

]yf5]y
3f50 at y50,L ~2.20!

and, following@6#,

]yWab50 ; a,b at y50,L. ~2.21!

D. Model parameters

Typical values for the model parameters are taken as
lows. We assume the solvent viscosityh s and densityr to
be those of water. We take the plateau modulusG and the
Maxwell time t from linear rheology@63# at f50.11 on
cetyltrimethylammonium bromide ~CTAB!
(0.3M )/NaNO3(1.79M )/H2O. We estimate the Rouse vis
cosityh m from the~limited data on the! high shear branch o
the flow curve of a closely related system@63#. The mesh
size is estimated to bel'(kBT/G)1/3 @55#. In fact this form
is truly valid only for a good solvent, although in the inte
ests of simplicity we assume it to be a good approximat
even for systems closer to demixing. We take the diffus
coefficientD and the equilibrium correlation lengthj from
dynamic light scattering~DLS! data @64# on CTAB/KBr/
H2O, at a comparable micellar volume fraction. We calcul
the drag coefficientz56phj22 @55#. We fix the slip param-
etera50.92 by comparing our intrinsic constitutive curve
the semidilute regime to that of Cates’ model for wormli
micelles@1#. We then have realistic values for all paramete
at f50.11 ~Table I!.

After a rescaling of stress, time, and length so thatG(f
50.11)51, t(f50.11)51, andL51, whereL is the rhe-
ometer gap (0.15 mm) used in Ref.@63#, the model has eigh
scaled parameters. Exploring this large parameter space
daunting prospect so we shall not, in general, vary the
rameters independently. Indeed, any given spinodal is ge
ated by simply tuning the single parameterf, relying on
known semidilute scaling laws for the dependence of
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other parameters uponf ~column 4 of Table I!. We do, how-
ever, calculate the spinodal for several different values of
diffusion coefficientD to investigate the effect of increasin
proximity to a zero-shear demixing instability. For simplici
we assume that the slip parametera is independent off. h m
andh s are also assumed independent off, but are prefac-
tored by the extensive factorsf and 12f, respectively, in
Eqs.~2.13! and ~2.16!. We often eliminater in favor of the
Reynolds timetR5rL2/hs5O„1023t(f50.11)….

E. Intrinsic constitutive curves

In planar homogeneous flow with uniform concentrati

f̄ and shearḡ̇ ~with vm5vs5v), the components of the
micellar strain are given by

W̄xy5
ḡ̇t~ f̄ !

11bḡ̇2t2~f̄ !
,

W̄yy52
1

~11a!

bḡ̇2t2~f̄ !

11bḡ̇2t2~f̄ !
,

W̄xx5
11a

a21
W̄yy ,

W̄zz5W̄xz5W̄yz50, ~2.22!

in which

b512a2. ~2.23!

The total shear stress is the sum of the micellar stress a
Newtonian component:

TABLE I. Experimental values of the model’s parameters
volume fractionf50.11 ~column 3!. Scaling laws for the depen
dence of each parameter uponf ~column 4!. In most calculations
we use the reference values of column 3 atf50.11, then tunef
using the scaling laws of column 4. Only where stated do we al
the parameters to vary independently.

Parameter SymbolQ Value atf50.11
d ln Q

d ln f

Rheometer gap L 0.15 mm 0
Maxwell time t 0.17 s 1.1
Plateau modulus G 232 Pa 2.2
Density r 103 kg m23 0
Solvent viscosity h s 1023 kg m21 s21 0
Rouse viscosity h m 0.4 kg m21 s21 0
Mesh size l 2.631028 m 20.73
Diffusion coefficient D 3.5310211 m2 s21 0.77
Drag coefficient z 2.431012 kg m23 s21 1.54
Correlation length j 6.031027 m 20.77
Slip parameter a 0.92 0
3-5
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S. M. FIELDING AND P. D. OLMSTED PHYSICAL REVIEW E68, 036313 ~2003!
S̄~ ḡ̇,f̄ !5G~f̄ !Wxy~ ḡ̇,f̄ !1h~f̄!ḡ̇. ~2.24!

This defines a set of intrinsic constitutive curvesS̄( ḡ̇,f̄)
~dashed lines in Fig. 3!, one for each concentrationf̄. The
criterion for the nonmonotonicity ofW̄xy to dominate the

Newtonian termh(f̄) ḡ̇ and cause nonmonotonicity in th

overall stressS̄ is h(f̄), 1
8 G(f̄)t(f̄). As f̄ is reduced,

therefore, the region of negative slope narrows, termina
in a ‘‘critical’’ point at f̄5f̄c'0.015. The same qualitativ
trend has been seen in cetylpyridrimum chloride~CPCl! so-
dium salicylade~NaSal!/brine @13#.

Although these intrinsic constitutive curves arestationary
solutions,] t•••50, they are not necessarilystableagainst
perturbations that can lead to shear banding and/or demix
We now proceed to discuss the instabilities that can aris

III. UNCOUPLED LIMIT

In the limit of infinite drag, i.e.,z→` at fixed f 9(f), the
relative motion between micelles and solvent is switched
disabling concentration fluctuations. In the slightly differe
limit of z→` at fixed micellar diffusion coefficient

FIG. 3. Top graph: intrinsic constitutive curves forf50.11,
0.091, 0.072, 0.053, 0.034, 0.015~dashed lines, downward!. Spin-
odals for the uncoupled limitz→` (s); coupled model with
D(f50.11) taken from the DLS data~Table I! (h); coupled
model withD artificially reduced (L,n). Bottom graph: spinoda
for D52.631025, replotted on a linear scale to show the lobe
instability at high shear rate more clearly.
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D5
f2~12f!2f 9

z
, ~3.1!

the concentration still fluctuates, but independently of
rheological variables. Equation~2.16! then reduces to the CH
equation~with a f-dependent mobility!. Independently of
df, the shear rate and micellar stress together obey unifo
f d-JS dynamics@6,65,66#. Accordingly~as described in de
tail in Sec. IV B below!, two separate instabilities are po
sible.

(a) Demixing instability.For D,0, the concentration ha
its own CH demixing instability, governed primarily by th
free energy defined in Eq.~2.6!. As noted, this occurs regard
less of shear. In this work we consider onlyflow-induced
instabilities, and so setD.0.

(b) Mechanical instability.For shear rates where the in
trinsic constitutive curve has negative slopedS/dġ,0, fluc-
tuations in the shear rate and micellar stress have their
shear banding instability, which for convenience we c
‘‘mechanical.’’

For finite drag, these instabilities are mixed by feedba
between flow and concentration. Although we always co
sider systems stable against zero-shear fluid-fluid demix
D.0, the mechanical instability is nonetheless enhanced
coupling to concentration and can now set in at a shear
ġ,ġc1, for which dS/dġ.0. Indeed, for systems close t
demixing, D*0, instability sets in atġ*0, for which the
region of negative constitutive slope forġ.ġc1 is essentially
irrelevant. In this way, the coupling mechanism allows
smooth crossover between ‘‘mechanical instabilities’’~trig-
gered mainly by the negative constitutive slope! to ‘‘demix-
ing, triggered by flow’’ with increasing proximity to zero
shear demixing,D50.

In what follows, we study in detail the onset of this com
bined instability. We consider two different flow historie
The first ~Sec. IV! assumes an initial state on the intrins
constitutive curve and is used to define the ‘‘spinodal’’ lim
of stability in sweeps along this curve. This is analogous
defining the spinodal of a van der Waals fluid via quasista
compression and suffers from the same practical ambig
that finite fluctuations can cause separation or banding
metastablekinetics before the spinodal is reached. The s
ond history~Sec. V! considers a start-up ‘‘quench’’ into th
unstable region and is~essentially! the counterpart of a tem
perature quench into the demixing regime of a van der Wa
fluid. The analysis here is complicated by the fact that
fluctuations emerge against the time-dependent start-up fl

IV. INITIAL STATE ON INTRINSIC CONSTITUTIVE
CURVE; SLOW SHEAR RATE SWEEPS

A. Linear analysis

Armed with the intuition of the previous section, we no
turn to the analysis proper. In this section, we study the lin
stability of homogeneous initial states on the intrinsic con
tutive curve to find the spinodal onset of instability in she
rate sweeps along this curve.
3-6
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Looking back at Eqs.~2.13!, ~2.14!, ~2.16!, and~2.17!, we
recall that the model has the following dynamical order p
rameters: fluid velocityv, local micellar strainW, and con-
centrationf. ~For large drag,v rel is assumed to respon
adiabatically.! In what follows, we will work in terms of the
shear rate¹ v instead of velocityv, taking the gradient of
the ~linearized version of the! force balance equation Eq
~2.13!.

An initial homogeneous shear state on the intrinsic c

stitutive curve has uniform¹ v5 ḡ̇ x̂ ŷ and f5f̄, with the

components ofW̄( ḡ̇,f̄) ~also uniform! given by Eq.~2.22!.
We encode this state as follows:

ū5 ḡ̇ê ¹ vxy
1(

i j
W̄i j êWi j

1f̄êf , ~4.1!

in which theê are dimensionless unit vectors@67#.
Noise induces fluctuations about this state, giving

u~r ,t !5ū1(
k

du k~ t !exp~ i k•r !, ~4.2!

with the sum covering both positive and negativek, and
du2k5du k* ensuring thatu(r ,t) is real. For simplicity, fol-
lowing numerous previous authors@4,35,48,69#, we consider
only fluctuation wave vectors in the velocity gradient dire
tion k5kŷ and~separately! the vorticity directionk5kẑ. We
discard any component in the flow directionx̂, which would
be advected by the background flow, greatly complicat
the analysis. Indeed, the spinodal is commonlydefinedusing
only these advection-free fluctuations@68#. We defer to a
future paper@70# a full numerical calculation of the scatte
ing structure factors in the entirekx-ky andkx-kz planes, as
could be investigated experimentally by light scattering.

Substituting Eq.~4.2! into Eqs.~2.13!, ~2.14!, ~2.16!, and
~2.17! and retaining only terms linear in the fluctuations, w
get an equation of the form

] tdu k~ t !5M k•du k~ t !1h k~ t !, ~4.3!

where we have now included a noise source of the fluc
tions,h k(t). This linearized equation is valid only as long
the fluctuations remain small, and so can predict only
initial stages of fluctuation growth in any instability, which
our aim.
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The stability matrixM k determines the fate of the fluc
tuations. Its eigenmodes obey

vk,av k,a5M k v k,a, ~4.4!

wherea is the mode index. The eigenvaluesvk,a versusk
define a multibranched dispersion relation. For the init
stateū to be stable~decaying fluctuations!, the real part of all
dispersion branches must be negative. A positive eigenv
vk,a indicates an unstable mode that grows exponentially
time with relative order-parameter amplitudes specified
the corresponding eigenvectorv k,a . As the background ho-

mogeneous shear stateū5@ ḡ̇, W̄, f̄# is tracked upwards
~downwards! sweep along the intrinsic constitutive curv
therefore, the lower~upper! spinodal lies where the eigen
valuevk* of M k5M k(ū) with the largest real part~maxi-
mized overk anda) crosses the imaginary axis in the pos
tive direction.

For any shear rate between the spinodals, the disper
relation is positive for some range of wave vectors. Ty
cally, we find just one unstable branchvk . We give results
for this branch below, focusing on any global maximu
which indicates a selected length scalek* 21 at which inho-
mogeneity emerges most quickly. We also study the unsta
eigenvectorv k* at this maximum, which encodes the ‘‘na
ture’’ of the instability ~mechanical versus demixing!.

We devote most of our attention to flow gradient fluctu
tions k5kŷ, returning at the end of this section to briefl
analyze vorticity fluctuations, the stability of which turns o
to be unaffected by shear in our model.

For flow gradient fluctuations, then,dvy50 by incom-
pressibility and the relevant remaining components
du k(t) are ikdvx5dġ,ikdvz ,dWxy ,dWxx ,dWyy ,dWxz ,
dWyz ,dWzz, anddf. Evaluating the components of the st
bility matrix M k(ū), we find that it decomposes into thre
independent subspaces:S1[@ ikdvx5dġ,dWxy ,dWxx ,
dWyy ,df#, S25@ ikdvz ,Wxz ,Wyz#, and S35Wzz. In all
unstable regimes, for this flow history, onlyS1 is unstable
@71#, so we focus on this subspace hereafter.

While most of the results given below will be numerica
in some regimes we also givequalitative analytical results,
obtained from the following simplified form of the relevan
stability matrix in the subspace@dġ, dWxy, dZ,df]:
M k5S 2
hk2

hstd
2

k2

hstd
0

11Z̄ 212 l 2k2
ḡ̇

2bW̄xy 2bḡ̇ 212 l 2k2

0 0 k2/ z̃

2
G8W̄xyk

2

hstd

W̄xyt8

Z̄t8

2D̃k2~11j2k2!

D . ~4.5!
3-7
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For convenience, we have changed variables to

Z5
a21

2
Wxx1

11a

2
Wyy ~4.6!

and @actually absent from the simplified matrix~4.5!#

Y5
a21

2
Wxx2

11a

2
Wyy . ~4.7!

We have also defined renormalized drag

z̃5
~11a!

f~12f!2
z ~4.8!

and diffusion coefficient

D̃5D2
Z̄G8

z̃
. ~4.9!

(Z̄ is negative soD̃.D.0.! The matrix~4.5! is exact in the
uncoupled limitz→`. In this limit, therefore, we note tha
the normal stresses appear only through the linear comb
tion Z(Wxx ,Wyy), with Y(Wxx ,Wyy) playing no part. For
finite z it contains several approximations@72#—most nota-
bly neglectingdY—and so underestimates the growth rate
the coupled instability. However, we have checked that
qualitative trends are unaffected. In some places below
further neglect terms of orderh. This is valid only for con-
centrations not too near the critical concentrationfc and
shear rates not too far above the lower spinodal, so thathġ
!GWxy . In any case, start-up at higher shear rates is
violent to study experimentally@73#.

In order to satisfy the boundary conditions]ydf50,
]ydW50, anddv50 ~imposed strain rate!, only harmonics
of the gap sizeky5np/L are allowed. But in order to defin
the spinodal independently of the system size, we allow
bitrarily small wave vectors.

B. Results: Uncoupled limit

1. Spinodal

In the limit z→` at fixed D} f 9/z, fluctuations in the
mechanical variables decouple from those in concentrat
Our numerical results for the spinodals in this limit are giv
by the circles in Fig. 3. The unstable region coincides w
that of negative constitutive slopedS/dġ,0, as expected. I
vanishes at a ‘‘critical point’’f

c
'0.015, as in the experi

ments of Ref.@13#.
Analytically, the stability matrix in this limit is exactly

M k5S MM 2

0 2Dk2~11j2k2!
D ‘‘mechanical’’,

df,
~4.10!

in which MM is the upper left 333 ‘‘mechanical’’ sector of
matrix ~4.5!. ~The three elements represented by the dash
03631
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nonzero but irrelevant to the eigenvalues since all o
diagonal elements in the bottom row are zero.! Its eigenval-
ues obey

vk
41avk

31bvk
21cvk1d50, ~4.11!

whered5DetM k . Since the roots of any such polynomi
with real coefficients are either real or complex-conjug
pairs, there are two possibilities for the spinodal. First,
root with the largest real part could be zero, implying t
onset of a monotonically growing instability. Alternativel
the root could be one of a pure imaginary pair, implying t
onset of growing oscillations.~In the language of dynamica
systems’ theory, this is the signature of a Hopf bifurcati
@74#.! For the parameters considered, we have mostly fo
the first case@75#. Accordingly, our analysis hereafter con
siders only this first case, for which the spinodal is given
d5DetMk50. Assuming just one unstable eigenval
~which is the case for the present purposes!, DetM k,0 in
the unstable region, i.e.,

DDM.0, ~4.12!

in which

DM[DetM M

5
k2

hstd
$2h~11bḡ̇2!2~11Z̄!1bW̄xyḡ̇%

52F k2

hstd
~11bḡ̇2!GdS̄

dḡ̇
. ~4.13!

~We have neglected the interfacial termsl 2k2 and j2k2 in
calculating the spinodal, because they merely cut off the
persion relation at short length scales without affecting
sign of the maximum growth rate.! The term in the square
brackets of Eq.~4.13! is always positive, so the condition fo
instability is finally just

2D
dS̄

dḡ̇
.0. ~4.14!

From this, we see that CHf demixing can occur if the
zero-shear diffusion coefficient is unstable,D,0. As noted
above, however, in this paper we consider only flow ins
bilities, and so setD.0. The unstable region then i

dS̄/dḡ̇,0, as seen numerically: the instability occurs in t
upper 333 subspace of the matrix~4.10! and so is purely
mechanical.

Note that, although the normal stresses@encoded byZ
5Z(Wxx ,Wyy)] have apparently canceled from Eq.~4.14!,
they in fact play a crucial role in the mechanical instabili
as follows. The origin of this instability is the positive term

(k2/h std)bW̄xyḡ̇ in the curly braces of Eq.~4.13!. In this
term,2k2/h std is the prefactor todWxy in thedġ equation,
and states that a local increase inWxy causes a diffusive
decrease inġ. The remaining factor feeds back positively:
3-8
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FIG. 4. Positive~unstable! dispersion branch atf50.11. ~a! and~d! are for the uncoupled model;~b! and~e! are for the coupled mode
in which all parameters assume the experimental values of Table I~spinodal given byhs in Fig. 3!; ~c! and~f! are for a coupled model in
which D(f) is artificially reduced~spinodal given byns in Fig. 3!. For each vertical pair of graphs, the bottom is an enlargement of the

one, at shear rates near the lower spinodal. In each subfigure, the white space defines (ġ,k) values for which all dispersion branches a
negative.
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decrease inġ causes a constitutive increase inWxy , consis-
tent with the negative slope in the constitutive curve. Ho
ever, this factor itself describes two mechanisms, each
which involves the normal stressZ. The factor2bW̄xy ~pref-
actoringdġ in thedZ equation! states that the decrease inġ

causes an increase inZ. The remaining factorḡ̇ ~prefactoring
dġ in the dWxy dynamics! states that this increase inZ
causes an increase inġ, thereby completing the positiv
feedback. This role of normal stress was not considere
early studies of mechanical instability@4#, although see@76#.
Note finally that theabsolutevalues of the micellar norma
stresses are important, not just the differenceWyy2Wxx : the
trace of themicellar contributionto the stress tensor is no
arbitrary.

Having discussed the spinodal onset of mechanical in
bility, we now consider the dispersion relations in the u
stable regime.

2. Dispersion relation

Before discussing the dispersion relation for fluctuatio
about an initial state on the intrinsic constitutive curve,
make the following cautionary remark. While the stabili
analysis of this initial state can correctly define the spino
03631
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boundaryof instability in sweeps along the flow curve~pre-
vious section!, it is less usefulinside the unstable region
since one cannot prepare an initial state on the unstable
of the constitutive curve. Indeed, start-up quenches into
unstable region in general go unstable long before the int
sic constitutive curve can be attained~see Sec. V!. However,
the main features of the dispersion relation for fluctuatio
about the unstable constitutive curve do still appear in th
time-dependent counterparts of start-up flow. Our motivat
for discussing them here is to gain early qualitative insig
without the complication of time dependence.

For this pure mechanical instability~with this initial con-
dition! we observe only one positive dispersion branc
shown in Figs. 4~a! for f50.11 and 5~a! for f50.02.
Strictly, only harmonicsk5np of the gap sizeL[1 are
allowed. However, we still showk,p, because for some
systems the features of this domain~discussed below! could
lie in the allowed regionk>p. Figure 4~d! contains the
same data as Fig. 4~a!, but enlarged on shear rates near t
lower spinodal: this is the only regime in which bandin
start-up kinetics have been studied experimentally since t
become too violent at higher shear rates@73#.

For a given unstable applied shear rateḡ̇, the growth rate
v tends to zero ask→0 and ask→`, with a broad plateau
3-9
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FIG. 5. Unstable dispersion branch atf50.02. ~a! is for the uncoupled model;~b! is for the coupled model in which atf50.11 all
parameters assume the experimental values of Table I~spinodal is given byhs in Fig. 3!; ~c! is for a coupled model in whichD(f

50.11) is artificially reduced~spinodal given byns in Fig. 3!. In each subfigure, the white space defines (ġ,k) values for which all
dispersion branches are negative.
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in between. This can be understood via the following a
lytical results obtained from the characteristic equation
matrix ~4.10! and schematized in Fig. 6~a!.

~i! Reynolds regime k→0. Here we find

vk52
dS̄

dḡ̇

k2

h std
. ~4.15!

This is marked as a dashed line in Fig. 6~a!, and agrees wel
with the numerical data. Here, the instability is limited by t
Reynolds rate at which the shear rate~conserved overall!
diffuses a distanceO(1/k): the micellar stress responds adi
batically in comparison.

~ii ! Nonconserved plateau regime.At these shorter length
scales~but still with k2l 2!1) the growth rate is instead lim
ited by the Maxwell time on which the micellar backbon
03631
-
f
stress evolves~and the Reynolds number is effectively zero!.
Because micellar stress is nonconserved, the growth ra
independent ofk:

v5
D̃M

11Z̄
52

1

~11Z̄!2

dS̄

dḡ̇
1O~h,h̃ ! ~4.16!

with

D̃M5DM

hstd

k2
. ~4.17!

~Recall thatDM}k2.) The prediction of Eq.~4.16! is marked
as a dashed line~also incorporating the interfacial regime
below! in Fig. 6~a!.
s given in
FIG. 6. Illustration of the various dispersion regimes discussed in the text:~a! uncoupled mechanical instability,~b! coupled model.~b,
left! is for a shear rate that would be stable in the uncoupled limitz→`; ~b, right! is for a higher shear rate thatis inside the uncoupled
mechanical spinodal. The solid lines are the exact numerical results. The dashed lines are the approximate analytical asymptote
Eqs.~4.15!, ~4.16!, and~4.21!. The dashed arrows show the approximatek* of Eq. ~4.24!.
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KINETICS OF THE SHEAR BANDING INSTABILITY . . . PHYSICAL REVIEW E68, 036313 ~2003!
~iii ! Interfacial cutoff.The dispersion relation is cut of
oncekl5O(1) by the reluctance to form interfaces. Her
the growth rate follows from Eq.~4.16! with v→v1 l 2k2.

The crossover between the first two regimes occurs
length scale much greater than the interfacial cutoff, givin
broad intermediate plateau. The maximum inv(k) is very
shallow and its length scale exceeds the system size fo
experimental systems considered here. Therefore fluctua
grow equally quickly at all length scales from any typic
system size down to the interface width, and there is
selected length scale, in disagreement with experiment
the next section, we see that coupling to concentration n
rally selects an initial length scale at which inhomogene
emerges.

Before proceeding, however, we pause to note that sev
previous authors have considered the mechanical instab
of the JS model, without concentration coupling, althou
few have included the interfacial term required to select
ultimate steady banded state, and which, in this linear an
sis, cuts off the dispersion relation at high wave vector
collection of references can be found in the review@77#. For
example, Refs.@7,8# gave a nice analysis of the stability o
stationary homogeneous solutions on the intrinsic cons
tive curve, at fixed overall stress. They considered the z
Reynolds limit and therefore found nok dependence. In the
plane ofWxy-Z, they found the lower shear branch to be
attracting node, the upper branch to be a stable focus, an
branch of decreasing stress to be a saddle point. Refer
@9# found the condition for instability to bedSxy /dġ,0,
consistent with our analysis. Beyond the JS model, Ref.@5#
considered the linear stability of a simple scalar viscoela
model, without interfacial terms, at zero Reynolds numb
Consistent with our analysis, they found nok dependence
Reference@61# studied a scalar viscoelastic model atfinite
Reynolds number,with interfacial terms, and did apparent
find a selected wave vector. However, there the viscoela
stress was assumed to respond adiabatically so the inte
diate plateau, which in our case eliminates this length sc
was artificially absent.

C. Results: Coupled model

For finite drag, the mechanical instability described abo
is coupled to fluctuations in concentrationdf via the
Helfand-Fredrickson feedback mechanism. As already
cussed, the main source of this feedback is the presenc
the viscoelastic stressG(f)W in the diffusion equation Eq
~2.16!. This causes concentration to diffuse up gradients
Wyy at rate}1/z. The elastic part of the stress@Eq. ~2.13!#
then increases in proportion toG8(f)[dG(f)/df, result-
ing in a positive feedback proportional toG8/z, which en-
hances the mechanical instability. Equation~2.16! actually
contains another source of feedback, in the elastic contr
tion of Fe to the term¹(dFe/df). For completeness we
include this in our numerics but neglect it in our analytic
work, since it does not affect the qualitative trends at sh
rates near the lower spinodal,ġ.;ġc1, which are the main
ones of interest to us.
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1. Spinodal

We now study how this flow-concentration feedba
shifts the spinodal onset of instability, so that the lower sp

odal now occurs at a shear rateġ,ġc1. This will have im-
portant implications for fast upward stress sweep exp
ments: ‘‘top’’ jumping will now occurbefore the maximum
of the underlying flow curve is reached.

Our numerical results are given in Fig. 3. For the expe
mental model parameter values of Table I the spinodals
shifted only slightly~squares in Fig. 3!, so that the instability
is still essentially ‘‘mechanical,’’ but perturbed by concentr
tion coupling. However, this shift increases dramatically
systems that are near to an underlying CH demixing insta
ity, as illustrated by reducingD(f50.11) at fixed coupling
G8/z ~diamonds and triangles in Fig. 3!. For D*0, instabil-
ity sets in at very low shear rates, for which the regime

negative constitutive slope forġ.ġc1 is essentially irrel-
evant. At these low shear rates, the instability is essenti
CH demixing, triggered by shear.~When D finally goes
negative—not shown—demixing must occur even at z
shear.!

On the basis of these results, we classify systems into
basic types.

Type I systemsare far from a CH demixing instability. The
spinodal is shifted only slightly by concentration coupling

Type II systemsare close to a CH instability (D*0). The
spinodal is strongly perturbed by concentration coupling.

Correspondingly, we anticipate two types of instabili
~with a smooth crossover in between!.

Type A instabilities, which are essentially mechanica

‘‘shear banding’’~eigenvector mostly indġ, dW) but per-
turbed by coupling todf. These are expected in all type
systems, and in type II systems for shear rates well above
lower spinodal.

Type B instabilities, which are essentially CH demixing
~eigenvector dominated bydf), triggered by flow~SID!.
These occur in type II systems at shear rates just inside
lower spinodal, see Refs.@36,41,45–48#.

This intuition is confirmed by the results given in Sec.
below.

To complement the numerical results of Fig. 3, an a
proximate analytical condition for instability that qualita
tively reproduces the shifts in the lower spinodal@found by
settingvk50 in the characteristic equation of the approx
mate stability matrix~4.5!# is

D̃DM1
1

z̃
DF.0. ~4.18!

In this inequality,DM is the mechanical determinant alread
defined in Eq.~4.13!; DF is a ‘‘feedback determinant,’’ which
captures the flow-concentration coupling discussed abov
3-11
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DF5U 0 2
k2

hstd
2

G8W̄xyk
2

hstd

11Z̄ 21 W̄xyt8

2bW̄xy 2bḡ̇ Z̄t8

U1O~h0,h̃0!

52
k2

hsts
G8W̄xy$2bġ~11Z̄!2bW̄xy%1O~h0,h̃0!

52G8W̄xyF k2

hsts
~11bġ2!GdZ̄

dḡ̇
1O~h0,h̃0!, ~4.19!

wheredZ̄/dḡ̇,0. ~The terms int8 cancel each other.! As for
the uncoupled model, the interfacial terms have been
glected in locating the spinodal. Our final condition for i
stability is thus

D̃
dS̄

dḡ̇
1

G8W̄xy

z̃

dZ̄

dḡ̇
,0, ~4.20!

which reduces to the uncoupled condition~4.14! for z→` at
fixed D, as required. The size of the second term~which
encodes feedback! relative to the ‘‘diagonal’’ product of un-
coupled instabilities~first term! is set byG8/(Dz);G8/ f 9,
i.e., the ratio of the ‘‘feedback elasticity’’G8 to the osmotic

FIG. 7. Sketch of the unstable~dashed! region of a mechanica
instability ~a! decoupled from or~b! coupled to concentration. As
discussed in the text, concentration coupling broadens the regio
instability and can sometimes cause a new region of instability
develop in the high shear rate branch~see Fig. 3!.
03631
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elasticity f 9. The kinetic coefficientz has canceled from this
ratio, since the instability occurs adiabatically at the sp
odal.

Note finally that a second lobe of instability appears
high shear rates for small values ofD. @See Fig. 3~bottom!
and Fig. 7.# However, its existence and location are high
sensitive to the choice of model parameters and to the pre
details of model definition: it appears much more readily a
extends to much higher shear rates if the Newtonian con
bution to the micellar stress is not included. Its eigenvecto
overwhelmingly dominated bydġ. It is associated with two
complexeigenvalues with equal positive real parts. We
not study this instability in detail, but return in Sec. VI t
discuss its potential implications. The effects of concent
tion coupling in our model are summarized in Fig. 7.

The enhancement of flow instabilities by concentrati
coupling was first predicted by the remarkable insight
Schmitt et al. @35#. Our Eq.~4.20! corresponds to their Eq
~24!, and the flow-concentration feedback mechanism of
model corresponds to their direct assumption of a chem
potentialm5m(ġ). However, this is truly equivalent to ou
approach only if the viscoelastic stressW(ġ) can adjust adia-
batically ~assumed in Ref.@35#!, whereas we find below tha
the dynamics inside the spinodalare dictated by the rate of
micellar stress response.~The spinodal is unaffected, sinc
the response here is adiabatic by definition.! Schmitt et al.
also predicted an instability for negative feedback, but c
cluded it to be similar in character to a pure mechani
instability in which concentration plays no role. In ou
model, negative feedback would correspond todG/df,0;
we consider only positive feedback~in the notation of Ref.
@35#, C.0).

2. Dispersion relation

We now discuss the dispersion relation for fluctuatio
about a state on the intrinsic constitutive curve when conc
tration coupling is present. The cautionary remark made
Sec. IV B 2 above for the uncoupled model still applies: o
cannot in practice prepare an initial state on the unstable
of this curve.

We have seen in the previous section that concentra
coupling enhances the mechanical instability, shifting
lower spinodal to a shear rateġ,ġc1. We focus mainly, and
first, on shear rates just inside this lower spinodal, since
is the only regime in which unstable start-up kinetics a
feasibly studied: the instability is too violent at higher she
rates @73#. Comparing the dispersion relation for the pu
mechanical instability@Fig. 4~d!# to that for a coupled mode
of type I @Fig. 4~e!#, we see thatconcentration coupling en-
hances the mechanical instability only at short wavelengt,
thereby selecting a length scale k* 21. We discuss this length
scale in more detail below. At long wavelengths~small k),
the plateau of the uncoupled instability is still apparent~pro-
vided dS/dġ,0) and unperturbed. FordS/dġ.0 this pla-
teau disappears to leave only the diffusive, concentrati
coupled bump. The dispersion relation for a system close
type II (D reduced by a factor 100, at fixedG8/z) is shown
in Fig. 4~f!: the enhancement at long length scales is mu

of
o
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KINETICS OF THE SHEAR BANDING INSTABILITY . . . PHYSICAL REVIEW E68, 036313 ~2003!
more pronounced, corresponding to the greater spinodal
~triangles of Fig. 3!. However the mechanical platea
~present whendS/dġ,0) is still unperturbed at long lengt
scales@although indiscernible on the scale of Fig. 4~f!#.

The overall dispersion shape is therefore the same in
I and II systems. Its main features can be understood in m
detail by analyzing the simplified stability matrix~4.5!. We
consider two separate cases.

~a! Shear ratesabovethe lower spinodal of thecoupled
model but that are still low enough to be mechanically sta
in the uncoupled limit@dS/dġ.0; Fig. 6~b, left!#. Here, we
find the following regimes.

~i! Diffusive regime k→0 in which

v52F D̃1
1

z̃

DF

DM
Gk2. ~4.21!

This is marked as a dashed line in Fig. 6~b, left!, and slightly
underestimates the exact result@72#. The growth rate in this
regime is limited by the rate at which matter diffuses a d
tanceO(1/k): momentum diffusion and micellar strain re
sponse are adiabatic in comparison.@Note that for larger
shear rates for whichdS/dġ,0, discussed in~b! below, Eq.
~4.21! gives v,0, so this branch is absent from the inst
bility; compare Figs. 6~b, left and right!.#

~ii ! Nonconserved ‘‘plateau’’ regime.For largerk, the rate
at which the nonconserved micellar strain can respond~even
within concentration enhanced dynamics! is the limiting fac-
tor; concentration diffusion becomes adiabatic in comp
son. If the eventual interfacial cutoff in the dispersion re
tion oncel 2k25O(1) or j2k25O(1) were absent we would
then see a nonconservedk-independent plateau regime
which

vpl5
D̃M1D̃F /D̃ z̃

11Z̄2G8bW̄xy
2 /D̃ z̃

, ~4.22!

with

D̃i5Di

hstd

k2
, i PF,M . ~4.23!

~Recall thatDM}k2 andDF}k2.) However, for the system
of interest to us, the low-k crossover to this regime is no
well separated from the interfacial cutoff and the plateau
replaced by a rounded maximum at (k* ,v* ) ~thus defined!
where v* ,;vpl . This maximum selects the length sca
k* 21 at which structure first emerges, as noted above, an
seen experimentally@32#.

~iii ! High k interfacial cutoff.The dispersion relation is
cut off by interfaces oncek2l 25O(1) or k2j25O(1). l and
j are roughly comparable for the systems of interest to u

An estimate for the selected wave vectork* can be ob-
tained by expanding aboutv'vpl to find

k* 4'
vpl

D̃j22D̃~11Z̄!l 2/D̂M2G8bW̄xy
2 l 2/ z̃D̂M

, ~4.24!
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where

D̂M5D̃M2vpl~11Z̄!,0. ~4.25!

This k* is marked by a dashed arrow in Fig. 6~b!, and agrees
reasonably with the numerics. As in the conventional C
instability, k* →0 at the spinodal~where v* →0). This is
not visible in Figs. 4 and 5, becausek* starts to diminish
appreciably only for indiscernibly smallv* on our scale.
Note that Eq.~4.24! does not reproduce the selected wa
vector of standard CH theory at zero shear, since phase s
ration is still affected by the coupling of composition to vi
coelastic effects@78# even in this limit.

~b! For higher shear rates that would have been unsta
even in the uncoupled limitdS/dġ,0, the dispersion rela-
tion develops a shoulder at smallk: see Fig. 6~b, right!. As
noted above, this is just the large length scale part of the p
mechanical dispersion branch~Sec. IV B!, comprising a
Reynolds regime and a mechanical nonconserved reg
@See regimes~i! and~ii ! in Fig. 6~b, right!.# The growth rate
here is much faster than diffusion so concentration is abs
from the eigenvector. At shorter length scales, concentra
can keep pace andis included. For shear rates that are n
too deep inside the unstable region, the dispersion rela
then rises to the rounded plateau estimated by Eq.~4.22!
@regime~iii ! of Fig. 6~b, right!# before finally being cut off
by interfaces@regime ~iv!#. The maximum atk* is again
estimated by Eq.~4.24! @marked by the dashed arrow in Fig
6~b, right!#.

The preceding analysis captures the qualitative feature
the dispersion relations in many regimes. However, so
more exotic effects are apparent in Figs. 4~b! and 4~c! for
shear rates well above the lower spinodal. For 20&ġ&80,
concentration coupling givesnegative feedback at short
length scales. The origin of this~not included in our above
analytical treatment! is that the velocity advecting the mice
lar backbone strain is not the center of mass velocityv ~as
the above analytical work assumed! but the micellar velocity
vm5v1(12f)v rel . A fluctuationdWyy in general causes a
fluctuation inf, i.e., inv rel . When included in the advective
term, this feeds back negatively onWyy . At still higher shear
ratesġ.80 in Fig. 4~c!, the dispersion relation has a pro
nounced ridge corresponding to the high shear rate lobe
cussed above and schematized by the right hand dashed
of Fig. 7~b!.

3. Fluctuations in the vorticity direction

In the uncoupled limitz→`, the mechanical subspace
stable with respect to vorticity fluctuations at all shear rat
while concentration has the usual CH demixing instabil
for D,0. Can coupling influence this instability? In som
works @35,47# spinodal shifts have indeed been found. In o
model this does not occur, for the following reason. By an
ogy with the feedback mechanism studied above fork

5kŷ, the term in Eq.~2.16! that could participate in positive
feedback isW̄zzG8(f)k2df. In our model~unlike @35,47#!
3-13
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S. M. FIELDING AND P. D. OLMSTED PHYSICAL REVIEW E68, 036313 ~2003!
W̄zz50 @Eq. ~2.22!# so the stability of vorticity fluctuations
is unaffected by shear. Accordingly, hereafter we consi
only k5kŷ.

V. SHEAR START-UP EXPERIMENT

A. Time dependence and linear analysis

The stability analysis of start-up flow is more involve
because here fluctuations emerge against a background
that itself evolves, deterministically, in time. We first outlin
these deterministic kinetics~for an idealized noiseless sys
tem! before analyzing fluctuations.

1. Deterministic ‘‘background’’ kinetics

At time t50, the rheometer plate aty5L is set in motion

with velocity ḡ̇Lx̂, giving an instantaneous shear rate profi

ġ(y,0)5 ḡ̇d(y2L). On the Reynolds time scaletR
5rL2/h.1023t, this rapidly homogenizes across the c

such thatġ(y)5 ḡ̇. Then, on the much slower Maxwell tim
scalet, the micellar strain starts to evolve homogeneou
according to Eq.~2.17!, as

Wxy~ t !5
ḡ̇

11bḡ̇2
$12e2t@cos~Abḡ̇t !2Abḡ̇ sin~Abḡ̇t !#%,

Wyy~ t !52
1

11a

bḡ̇2

11bḡ̇2

3H 12e2tF cos~Abḡ̇t !1
1

Abḡ̇
sin~Abḡ̇t !G J ,

Wxx~ t !5
11a

a21
Wyy~ t !,

Wzz~ t !5Wxz~ t !5Wyz~ t !50 ~5.1!

FIG. 8. Homogeneous background micellar strainW̄xy vs t for

ġ52.0, 4.0, 8.0, 16.0~top to bottom at right of plot!. For shear rates
inside the spinodal, this homogeneous background state can g
stable well before it would have attained time-independence;
text.
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~see Fig. 8!. Although these expressions reduce to Eq.~2.22!
as t→` ~so that the total shear stress would then be on
intrinsic constitutive curve!, we show below that in genera
the flow becomes unstable before this limit is reached.

2. Inhomogeneous fluctuations

In a real system, these homogeneous transients repre

only a background stateū(t)5@ ḡ̇,W̄(t),f̄#, which is subject
to fluctuations induced by noise:

S ġ~r ,t !

W~r ,t !

f~r ,t !
D 5S ḡ̇

W̄~ t !

f̄

D 1(
k S dġ~ t !

dW~ t !

df~ t !
D

k

eik•r .

~5.2!

~As noted above, we are now concerned only with fluctu
tionsk5kŷ.! To investigate the fate of these fluctuations, w
linearize~as before! the model’s dynamical equations~2.13!,
~2.14!, ~2.16!, and~2.17! to get a linear stability equation o
the form

] tdu k~ t !5M k~ t !•du k~ t !1h k~ t !, ~5.3!

where the source termh k(t) arises from the backgroun
noise. Equation~5.3! is the counterpart, in start-up, of Eq
~4.3!, with the important additional feature thatM k(t) is
time dependent, via its dependence on the homogene

background stateū(t)5@ ḡ̇,W̄(t),f̄# as the micellar strain
W̄(t) evolves toward the intrinsic constitutive curve.

Experimentally, the emerging fluctuationsdu k(t) are
measured in light scattering as the time-dependent s
structure factor,

Sk~ t !5^du k~ t !du2k
T ~ t !&5^duk~ t !du k

†~ t !&. ~5.4!

This obeys

] t Sk~ t !5M k~ t !•Sk~ t !1Sk~ t !•M k
†~ t !1N k , ~5.5!

which is exact for the fluctuations considered here.~If k• x̂
Þ0, an extra advective term appears alongside the time
rivative.! The noise matrixN k5^h k(t)h 2k

† (t)&. The solu-
tion of Eq. ~5.5! is

Sk~ t !5T expF E
0

t

dt9M k~ t9!G•Sk~0!•expF E
0

t

dt9M k
†~ t9!G

1E
0

t

dt8T expF E
t8

t

dt9M k~ t9!G•N k~ t8!•

3expF E
t8

t

dt9M k
†~ t9!G , ~5.6!

whereSk(0) is the initial, equilibrium structure factor at th
time t50 that shearing is commenced.T is a time-ordering

un-
ee
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KINETICS OF THE SHEAR BANDING INSTABILITY . . . PHYSICAL REVIEW E68, 036313 ~2003!
operator that ensures all products of the formM (tN)
•M (tN21)•••M (t0) have tN.tN21.•••.t0. This is re-
quired because the matrixM k does not, in general, commut
with itself at different times.

Equation~5.6! gives exactly the inhomogeneous fluctu
tions as they grow~in the unstable regime! out of the homo-
geneous background state, which is itself evolving tow
the intrinsic constitutive curve. It remains valid as long as
fluctuations are small enough that the original linearizat
of Eq. ~5.3! holds, and so predicts just the initial stage
fluctuation growth~our stated aim!. To avoid possible confu-
sion, we emphasize that it doesnot require that the evolution
of the homogeneous background should be slow comp
with the emergence of the fluctuations. This is perhaps c
trary to the immediate intuition that, in general, a fluctuati
would be swamped as it attempts to emerge, being ‘‘ov
taken’’ by the growing homogeneous background. Inste
the full state is an independent sum@Eq. ~5.2!# of this evolv-
ing background (k50) and the~much smaller! emerging
fluctuations, which are orthogonal to the base flow (k.0).

Direct evaluation of the integral in Eq.~5.6! is very diffi-
cult, because the matrixM k5M k„ū(t)… changes over time
and its eigenvectors correspondingly rotate:

vk,a~ t !v k,a~ t !5M k~ t !v k,a~ t !, ~5.7!

with explicit time dependence of bothvk,a(t) andv k,a(t). If
the eigenvectors were~approximately! time independent, i.e.
if v k,a(t)5v k,a ; t over the interval of fluctuation growth
then we could expand in this basisv k,a to find exactly

Sk,ab~ t !5Sk,ab~0!expF E
0

t

dt9@vk,a~ t9!1vk,b* ~ t9!#G
1E

0

t

dt8expF E
t8

t

dt9@vk,a~ t9!1vk,b* ~ t9!#G
3Nk,ab~ t8! ~5.8!

~which, we note, still allows arbitrary values of the rate
fluctuation growth relative to the evolution of the base flow!.
In reality, however, the eigenvectors rotate in time, so t
mode expansion can strictly be performed only in the diff
ential version:

] tSk,ab~ t !5@vk,a~ t !1vk,b* ~ t !#Sk,ab~ t !1Nk,ab~ t !.
~5.9!

Although not the full time integral, this result nonethele
specifies exactly the next small increment inSk(t) at any
time. It doesnot require any separation between the rates
fluctuation growth and of evolution of the base flow. It te
us that] t Sk(t) is dominated bySk,GG(t), whereG denotes
the most unstable eigenmodev k,G(t)[v k(t), with the larg-
estvk . In this paper, therefore, we confine ourselves to g
ing results for this most unstable mode, which determines
main features of the instability. We defer to a future pap
@70# calculation of the full start-up structure factor by n
merical integration of Eq.~5.5!.
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In any start-up experiment, then, the micellar stra
evolves over a timetss5O(t) ~thus defined! toward the in-
trinsic constitutive curve, as described above. The disper
relation vk,a(t) correspondingly evolves toward the on
given by Eq.~4.4! for an initial condition on that flow curve
For a shear rate in the unstable region, then, at least
dispersion branch must go positive at some timet0<tss so

that the homogeneous transient@ ḡ̇,W̄(t),f̄ goes unstable to
spatial fluctuations@79#. In most regimes we find only one
positive branch@80# and drop the mode subscripta, with the
understanding that we mean just this branch,vk(t). At wave
vectork, the amplitude of the growing fluctuations at a tim
t.t0 is approximatelyestimated by

A~k,t !;expF E
t0

t

dt8vk~ t8!G . ~5.10!

@This rough estimate is obtained from a simplified version
Eq. ~5.8! and therefore relies on the eigenvectors not rotat
too much over the intervalt0→t, i.e., all eigenvector com-
ponents remainingO(1).# We choose a rough criterion fo
detectability by light scattering to be lnA.10. This defines a
wave-vector-dependent time scalet inst(k), via

E
t0

t inst(k)

dt8vk~ t8!.10. ~5.11!

In most regimes, there is a selected wave vectork* at which
fluctuations emerge fastest, as the result of a peak in
dispersion relationvk(t) vs k. In practice, the peak shifts
along thek axis in time, but it is still usually possible to
obtain a reasonable estimate of the overallk* ; we justify this
claim below. We therefore define the overall time scale
instability to be

t inst5t inst~k* !. ~5.12!

By the timet inst, then, the system is measurably inhomog
neous and in the nonlinear regime, and our linear calcula
terminates. In general, this occurs well before the intrin
constitutive curve would have been attained, i.e.,t inst,tss
~Fig. 9!, so that the instability is determined not by the tim

FIG. 9. Cartoon: homogeneous start-up flow going unstable
time t inst before it can reach the intrinsic unstable constitutive cu
at timetss.
3-15
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FIG. 10. Type A instabilities in a type I system: time-dependent dispersion relation~top! and eigenvector~bottom! in the uncoupled limit
z→` for f50.11. The rheological model parameters all assume the experimental values of Table I. The thick line in~a! and the arrows in
~d!, ~e!, ~f! denote the time at which the instability becomes measurable. The discontinuities in the first derivative of the eige
components result from a crossing of eigenvalues, discussed in the text.

FIG. 11. Type A instabilities in a type I system: time-dependent dispersion relation~top! and eigenvector~bottom! for a coupled model
in which all parameters assume the experimental values of Table I. The concentrationf50.11. The arrows in~e!, ~f! show the time at which
the instability first becomes measureable@the instability occurs beyond the time window of~d!#. The discontinuities in the first derivative o
the eigenvector components result from a crossing of eigenvalues, discussed in the text. The instability timet inst occurs beyond the displaye

time window for ġ52.0.
036313-16



KINETICS OF THE SHEAR BANDING INSTABILITY . . . PHYSICAL REVIEW E68, 036313 ~2003!
FIG. 12. Type B instabilities~a!, ~d! and type A instability~b!, ~c!, ~e!, ~f! in a type II system: time-dependent dispersion relation~top!
and eigenvector~bottom! for a coupled model in which all parameters assume the experimental values of Table I,except D, which is reduced
by a factor of 105. The concentrationf50.11. The arrows in~e!, ~f! show the time at which the instability first becomes measurable@the
instability occurs beyond the time window of~d!#.
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independent dispersion relations of Sec. IV above, but
their time-dependent counterparts~given below!.

Is the unstable intrinsic constitutive curve ever attain
before the instability occurs, such thattss!t inst? A necessary
condition is that the growth ratev fc5vk* (t5tss) that would
occur once the flow curve were reached~given by the dis-
persion relations of Sec. IV! obeys@81#

v fctss!1. ~5.13!

This isnot usually satisfied~recall Figs. 4 and 5! sincev fc is
itself set by the Maxwell timet ~with a prefactor set by the
slope of the flow curve and by concentration couplin!.
Nonetheless, the condition~5.13! is satisfied just inside the
spinodal, sincev fc→0 smoothly at the spinodal. Howeve
this condition is not alwayssufficient. In particular, for shear
rates just inside theupperspinodal, the homogeneous mice
lar strain oscillates strongly in start-up. Correspondingly,
growth rate significantly overshootsv fc ~Figs. 10–12 below!
and fluctuations still emerge before the intrinsic constitut
curve would be attained. In fact, these oscillations mean
fluctuations can become~temporarily! unstable in start-up
even for shear rates above the upper spinodal~as defined via
slow shear rate sweeps!. This upper spinodal is therefore no
particularly relevant to start-up flows. In any case, sh
start-up is generally too violent to study experimentally
such high shear rates@73#.

For shear rates just inside thelower spinodal, the condi-
tion ~5.13! is necessaryand sufficient, and the intrinsic con
stitutive curveis then attained before the instability develo
appreciably. Here we can assume, to a good approxima
03631
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that the stability matrix changes discontinuously att50

from the stableM k(t50) ~with ḡ̇5W̄50) to the unstable
matrix M k(t5`) for a state on the intrinsic constitutiv
curve. The instability is then, even in start-up, determined
the time-independent dispersion relations of Sec. IV.

We pause to compare our analysis to that of Cahn
Hilliard for a two-component system temperature quench
at time t50 into the unstable region]m(f,T)/]f,0,
where m is the chemical potential. A good approximatio
invariably made, is thatm(f) changes discontinuously att
50 from its initial stable state to the final one of negati
slope, i.e., that the heat diffuses out instantaneously w
respect to the time scale at which fluctuations grow, so t
the counterpart of Eq.~5.13! applies. We have just seen th
the corresponding assumption for our purposes@the back-
ground stateū(t) instantaneously reaching the intrinsic co
stitutive curve# is not valid in general.

We now present results for the time-dependent unsta
dispersion branch over the time intervalt0→t inst for several
start-up quenches, indicating in each case the selected w
vectork* . We also give results for the time-dependent eige
vector ~at k* ) noting whether separation occurs predom
nantly in the mechanical variables or in concentration.

B. Start-up dispersion relations and eigenvectors:
Uncoupled model

Figure 10~top! shows the numerically calculated start-u
dispersion relationvk(t) for three different applied shea
ratesġ in this uncoupled limitz→`. The temporal oscilla-
3-17
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S. M. FIELDING AND P. D. OLMSTED PHYSICAL REVIEW E68, 036313 ~2003!
tions arise from the oscillations inW̄(t) toward the intrinsic
constitutive curve~Fig. 8!. @The timet'2 in Fig. 10~a! cor-
responds to a minimum inW(t), although the instability ac-
tually develops before this,t inst,2 @79#.# Despite the time
dependence, the main features of the time-independent
persion relation for fluctuations about the intrinsic consti
tive curve@Fig. 4~a!# are still apparent: there is a Reynold
regime ask→0, a nonconserved plateau regime at interm
diate k, and interfacial cutoff at largek. As before, then, in
this uncoupled limit there is no selected wave vectork* .

For each start-up, we estimated the timet inst at which the
instability would become measurable, as governed by cr
rion ~5.11! applied to wave vectors in the plateau regime
is marked by the thick line in Fig. 10~a! and an arrow in Figs.

10~d!–10~f!. For each value ofġ in Fig. 10, we findt inst

!tss: instability occurs long before the underlying flo
curve would have been attained, as described above.

Figure 10~bottom! shows the time-dependent eigenvec
at wave vectork* 5p ~chosen arbitrarily since the eigenve
tor is independent ofk in the plateau regime!. This is domi-
nated bydġ, since dWxy1hdġ50 in this zero-Reynolds
regime, andh is small. Note also that the normal stres
encoded indZ, dominates the shear contributiondWxy : con-
sistent with the remarks of Sec. IV B 1, the normal stre
plays an important role in this mechanical instability.

The discontinuity in the first derivative of the eigenvect
is due to a crossing of two positive eigenvalues: in contr
to the time-independent dispersion relations for fluctuati
about the intrinsic constitutive curve, in start-up there
sometimes a second positive dispersion branch, now in
subspace@ ikdvz ,Wxz ,Wyz#. However, this second unstab
mode occurs only at high shear ratesġ*10, and even then
crosses the first only for times well aftert inst: consistent
with the claim made above, we never observe mode cros
in the relevant time regimet<t inst. This also applies to the
coupled model, to which we now turn.

C. Start-up dispersion relations and eigenvectors:
Coupled model

We now give start-up results for the coupled model. D
noting the experimental~DLS! value of the diffusion coeffi-
cient D ~Table I! by Dexpt, Figs. 11 and 12 are forD
5Dexpt ~type I system! andD51025Dexpt ~type II system!,
respectively. The overall features of these dispersion r
tions are the same as for their time-independent counterp
@Figs. 4 and 6~b!#. In particular, there is, at any time, a we
defined peakk5kpeak(t). This peak in general shifts alon
the k axis in time. At t5t0, whenv* 50 by definition, we
numerically observe thatkpeak50. However, kpeak very
quickly attains a valuek* that is ~practically! time indepen-
dent and well approximated by Eq.~4.24!. In this way, the
time dependence ofkpeak occurs only at early timest.;t0,
for which the growth rate is insignificantly small. We argu
therefore, that we can choose the ultimatekpeak5k* as the
representative wave vector for the instability.

The time-dependent eigenvector at this selected w
vectork* is also shown in Figs. 11 and 12. As noted abo
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the eigenvector encodes the extent to which separation
curs in each different order parameter. Experimentally, po
ized light scattering is sensitive to fluctuations in the micel
strain, while unpolarized light scattering measures fluct
tions in the overall micellar concentration.

For type I systems at all~unstable! shear rates@Figs.
11~d!, 11~e!, and 11~f!#, and for type II systems at shear rat
that are not too small@Figs. 12~e! and 12~f!#, the eigenvector

is dominated by the mechanical variablesdġ and dW as
expected. In this case, the instability can be thought of
mechanical shear banding, perturbed by concentration c
pling ~type A instability!. In contrast, for the type II system a
low shear rates@Fig. 12~d!# the eigenvector is dominated b
concentration: here the instability is essentially CH dem
ing, triggered by flow~type B instability!. In this way, our
model captures a smooth crossover between ‘‘mechani
shear banding instabilities and demixing instabilities tr
gered by flow.

VI. CONCLUSION

In this paper, we have studied early stage kinetics in
unified model of shear banding and shear-induced demix
instabilities, which combines the nonlocal Johnso
Segalman model with a two-fluid approach to concentrat
fluctuations.

First we calculated the spinodal onset of instability f
shear rate sweeps along the underlying constitutive curve
the absence of coupling between flow and concentrat
fluctuations in the mechanical variables~shear rate and
stress! are unstable only when the intrinsic constitutive cur
has negative slope, as expected. Coupling to concentra
enhances this instability via the feedback mechanism of H
fand and Fredrickson, broadening the region of instability.
rapid upward stress sweep experiments, therefore, ‘‘to
jumping should in fact occurbefore the maximum in the
intrinsic constitutive curve is reached. This enhancement
creases with proximity to an underlying~zero-shear! CH de-
mixing instability. Accordingly, we classify systems into tw
types. Type I systems are far from a CH instability, and
mechanical instability is only slightly perturbed by conce
tration coupling. Closer to a CH instability~type II systems!,
instability can set in at very low shear rates.

We then calculated the initial structure that emerges a
a shear start-up quench into the unstable regime. An im
tant result is that a length scale is selected for this struc
only if the mechanical shear banding instability is coupled
concentration. We expect this to be a generic feature of sh
banding models.

The eigenvector at this length scale encodes the phys
nature of the instability. In type I systems, and type II sy
tems at high shear rates, it is dominated by strain rate
stress. The instability is therefore essentially mechan
shear banding~a type A instability!, triggered primarily by
the negatively sloping constitutive curve. In type II system
at low shear rates, the eigenvector is dominated by conc
tration, so we essentially have a shear-induced onset of
nearby thermodynamic fluid-fluid demixing instability~type
B!, i.e., shear-induced demixing. This crossover is mea
3-18
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able experimentally: unpolarized static light scattering m
sures concentration fluctuations, while polarized scatte
couples to the micellar strain.

This unification of mechanical instabilities and she
induced thermodynamic instabilities is an important findin
since they are often considered as separate phenomena@82#.
In this work we have demonstrated a smooth crossover
tween a shear-induced perturbation of an equilibrium th
modynamic instability, governed by a free energyFo(f)
~whose unstable mode is concentration!, and a flow-induced
instability whose unstable mode is a combination of
structural variables of the strain rate and various compon
of the micellar strain tensorW. In this case, the flow-induce
instability is due to the nonlinear coupling of flow toW.

An analogous example is the relation of the shear band
in semidilute wormlike micelles to the shear-induc
isotropic-to-nematic (I -N) transition in more concentrate
systems@20,22,83,84#. Theoretically, theI -N transition is
usually captured via an orientational free energyFe(Q) in
terms of the local orientation tensorQ @11,12#. Upon cou-
pling the I -N transition to flow, the equilibrium unstabl
mode of orientation couples to strain rate so that the unst
mode is now a linear combination of the strain rate and co
ponents ofQ; and the unstable region is also~usually! asso-
ciated with the classical hallmark of mechanical instabili
i.e., a negatively sloping flow curvedSxy /dġ,0. Hence,
although the physical origins of the instabilities in the typ
semidilute~non-nematic! and more concentrated~perturbed
I -N) wormlike micelles are different@in the former case due
to the nonlinear coupling of flow toW and in the latter due to
the nonlinear free energyFe(Q)], the signature of the insta
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bility is the same in practice; i.e., an unstable flow curve
which the strain rate is coupled to a nonconserved struct
tensor~respectivelyW andQ).

Finally, in type II systems, we found that a lobe of inst
bility develops at high shear rates, with the character o
Hopf bifurcation@74#. This could clearly have dramatic con
sequences for any putative coexistence of low shear and
shear bands, since the high shear band could itself be
stable. Indeed, the high shear band is often seen to fluct
strongly @85#, or to break into smaller bands@63#. However,
in our model this high shear instability is highly sensitive
choice of model parameters and could be an unrealistic
ture.

Our study was confined to fluctuations in the flow gra
ent direction and to the qualitative features of the instabi
that can be gleaned from the time-dependent dispersion
tions and eigenvectors. In future work, we will present n
merical results for the time-dependent unstable static st
ture factor in start-up, for fluctuations in the entire flow
flow gradient plane@70#. We also calculate flow phase dia
grams for the steady shear banded state@58#.

Note added. Recently, Yuan and Jupp numerically studi
a similar model of concentration-coupled shear banding.
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